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Some Fractal Properties of the Percolating Backbone 
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A new algorithm is presented, based on elements of artificial intelligence theory, 
to determine the fractal properties of the backbone of the incipient infinite 
cluster. It is found that the fractal dimensionality of the backbone is 
d~ B= 1.61 Jr• 0.01, the chemical dimensionality is dt = 1.40 + 0.01, and the fractal 
dimension of the minimum path dm~n=l.15_+0.02 for the two-dimensional 
triangular lattice. 

KEY WORDS: Percolation; incipient infinite cluster; backbone; fractal 
properties; artificial intelligence. 

1. I N T R O D U C T I O N  

The fractal properties of the percolating cluster at the percolation threshold 
Pc have recently been the focus of careful scrutiny, particularly the 
evaluation of the critical exponents necessary to describe the backbone  of 
this incipient infinite cluster (IIC). For  a recent review of the fractal 
properties of the incipient infinite clusters see, e.g., Refs. 1 and 2 and for the 
critical properties of the backbone  see, e.g., Refs. 3 6. The backbone  may 
be defined as the union of all self-avoiding walks defined between 
extremities of the I IC at the percolat ion threshold; or an alternative and 
equally viable description is the set of current-carrying bonds  of the per- 
colating cluster when a potential  difference is placed at the extremities and 
each bond  represents a unit resistance (the so-called r andom resistor 
network).  The non-current-carrying bonds are referred to as dangling ends. 
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There is an equivalent description for site percolation, where the backbone 
now refers to the set of sites through which the current flows and where all 
nearest neighbor occupied sites are connected by bonds of unit resistance. 
Recent work (3 6) has shown that an infinite hierarchy or spectrum of 
exponents is necesary to describe how the various moments of the voltage 
distribution of the bonds of the backbone scale at the percolation 
threshold, i.e., the moments of the voltage distribution scale independently 
and not, as one might intuitively expect from ordinary critical phenomena, 
with constant "gap" scaling. 

The backbone is also of interest, since its geometrical properties have 
led to a more comprehensive understaning of the general structure of per- 
colating clusters, e.g., the blobs, links, and nodes picture is primarily due to 
our understanding of the internal structure of the backbone. The fractal 
dimensionality of the backbone d~ B of the IIC has been determined 
numerically by several methods: large cell renormalization group, (7) 
expansion, ~s'9) position-space renormalization group, ~1~ and series 
expansion/m A range of values was reported for d~ B from 1.55 to 1.80. 
Recently Herrmann e ta / .  (14) introduced a new algorithm to determine the 
backbone of the percolating cluster for the two-dimensional square lattice 
and reported a value for d~ B of 1.60_+ 0.05. In a subsequent letter devoted 
to the analysis of the blob distribution function, Herrmann and Stanley (15) 
were able to obtain a more precise value for d~ B (1.62_+ 0.02), which was 
obtained from a precise determination of "g and the scaling relationship 

~ -  1 = dr/d~ B (1) 

where g describes how the number of blobs of size s scales with s for a 
given system size L and dr describes how the number of blobs scales 
with L. 

In this paper we report on an independent and new algorithm to 
determine the fractal dimensionality of the backdone. The algorithm 
described below is used to construct the backbone from clusters grown via 
the Leath (16'17) algorithm. The clusters are grown on the triangular lattice 
and in addition to the fractal dimensionality we determine the chemical 
dimensionality d t and the exponent describing how the radius of gyration 
of the backbone scales with chemical distance, ~. We are also able to 
deduce dmi ,= l /~ , ( l s  21) the exponent describing the minimum path 
between arbitrarily selected points on the backbone. For  a comprehensive 
description of these exponents we refer the reader to Stanley. (22) 

The numerical results for the minimum path exponent reported for 
percolation varied from 1.18 to 1.10 (see Ref. 19 for references). Havlin and 
Nossal (is) have conjectured that d m i  n = 2 - 1 / v - f l / v  = 1.1458, which is in 
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good agreement with most numerical estimates. However, Grassberger (19) 
has recently presented numerical results for the chemical dimensionality of 
the percolation cluster. This is related to dmi n via 

d =  (2v - f l ) / • l l  

where dmin = v11/v. Here v is the correlation length exponent, /~ the order 
parameter exponent, and v H is the ratio v/9. The value obtained for d leads 
to dmin=l.132_+0.003 and thus excludes the conjecture of Ref. 18. 
However, the work of Edwards and Kerstein ~2~ from the consideration 
of first passage velocity on the square lattice concluded that dmi n = 1, a 
value in complete disagreement with all previous work. 

2. T H E  R E C U R S I V E  A L G O R I T H M  

The algorithm to determine the backbone is a recursive one, which is 
implemented in two stages. The first step involves the complete description 
of the cluster in terms of a treelike structure (see Fig. la and lb) and thus 
determines a path from one endpoint (the root) Ps of the cluster to the 
other endpoint P1 (Fig. lc). This path may be considered as the 
"backbone" of the backbone. We have constructed a linear chain of sites 
Pi, which is a part of the backbone. The second step consists in finding all 
paths that leave the partially constructed backbone {Pi} at one site and 
return to the backbone at some other site. These sites or self-avoiding walk 
segments are now added onto the growing backbone and the process con- 
tinued until no further points are found. This is the recursive part of the 
algorithm, which was written in Pascal. A version was also completed in 
Modula-2. In order to implement the algorithm, it is convenient to con- 
struct a directed tree structure to define the cluster of occupied sites with 
the root of the tree as one of the endpoints of the backdone. Each site of 
the cluster is represented as a node of the tree and at each node infor- 
mation is stored to direct to neighboring nodes and also a pointer to its 
parent node. There is, therefore, a unique path from one of the endpoints 
(the root) to each site of the cluster. The tree structure allows us to traverse 
the cluster efficiently in either direction. This representation of the cluster 
by a tree structure defining a unique path to every site of the cluster 
enables the implementation of a heuristic search, common in artifical 
intelligence applications and expert systems. 

The algorithm used to grow the tree and hence to determine the 
backbone is a modification of the A* algorithm, (23,24~ which guarantees the 
finding of a solution if one exists. Figure 1 displays the various stages of the 
backbone algorithm. Our programs consist in (1) growing a cluster on the 
triangular lattice to a certain chemical distance, (2) determining the sites 
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that belong to the backbone, and (3) calculating the mass and radius of 
gyration of the constructed backbone. A second method of analysis consists 
in growing large clusters of chemical distance t/> 300. The backbone is then 
determined for these clusters and the mass and radius of gyration for 
chemical distances less than and equal to 300 noted. 

3. N U M E R I C A L  RESULTS 

Our results were derived for clusters grown on the triangular lattice, 
for which the percolation threshold is known to be exactly 1/2. We proceed 
to grow the cluster from a central occupied site, which is considered the 
initial growth site and labeled to. The neighbors of this initial growth site 
are occupied with probability Pc and blocked with probability 1 -p~.. The 
newly occupied sites are labeled tl and are the new growth sites and their 
unblocked vacant neighbors are the potential growth sites at the next step. 
The growth process is stopped when the cluster has reached a preset 
chemical radius. We considered all clusters grown, provided that there were 

I V I I / I  | ~ i t I I i i I I I I I I 

Fig. 2. Log-log plot of ( � 9  mass versus radius of gyration, (Q)  mass versus chemical 
distance, ( ~ )  and radius of gyration versus chemical distance for the standard backbone. 
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at least two growth sites at the preset chemical radius. The growth sites 
that were furthest apart were selected as the two endpoints Ps and P1 and 
the recursive algorithm described above was used to determine the 
backbone of the cluster. We were also able to define a more symmetric 
backbone, where every growth site at the preset chemical distance was con- 
sidered as a high potential or endpoint and the central site a low potential 
on earth. The set of conducting bonds or sites through which there is a 
flow of current constitute the backbone, which we refer to as the multiple 
backbone to distinguish it from the standard definition of the backbone. 
This structure was also considered by Havlin and co-workers, who referred 
to it as the "skeleton." 

The mass M of the backbone is expected to scale with the radius of 
gyration Rg as 

M ~  R~ B (2) 

In addition, we define the following exponents: 

M ~  t ds (3) 

Rg ~ t r (4) 

Fig. 3. Log-log plot of (C)) mass versus radius of gyration, (O) mass versus chemical 
distance, and (&) radius of gyration versus chemical distance for the multiple backbone. 
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From (2)-(4) 

d~B = d,/~ (5) 

where d, defines the chemical dimensional and ~ the relationship between 
the chemical distance t and the Euclidean distance Rg. Figure 2 shows the 
results for the standard backbone, which together with a last squares fit of 
the data lead to d~ B = 1.61 4- 0.02, d t = 1.42 + 0.02, and ~ = 0.88 4- 0.01; thus, 
dmin = 1.14_+0.02. The data for the multiple backbone are displayed in 
Fig. 3, where a comparable analysis yields d~B=l.64+_0.05, d r=  
1.42 _+ 0.05, and g = 0.87 4-0.04. We note that our algorithm has allowed us 
to analyze more realizations, at least 3000 trials for the large systems, and 
larger systems than had previously been possible (t~<300) for the 
backbone. The above computation was done on an HP9000 work station 
and took ~70  CPU hr. 

We checked our data for finite-size effects by calculating local slopes 
from nearby chemical distances, and although this showed large fluc- 
tuations, there were no discernible finite-size effects for the chemical distan- 
ces considered. 
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The second method of analysis consists in analyzing the properties of 
only large clusters, i.e., t >~ 300. The backbones of these large clusters are 
determined and the mass and radius of gyration as a function of chemical 
distance t ~< 300 noted. The fractal properties for 600 clusters as a function 
of chemical distance are shown in Fig. 4. The critical exponents show 
relatively little fluctuation to t > 1 5  to t ~ l g 0 .  There is, however, 
systematic deviation for t > 200 due to edge effects. A least squares analysis 
of the data in the range t = 2 0  to t =  190 leads to d r=  1.40+0.01, 2~= 
1.75 + 0.02, and d~ B -- 1.61 _+ 0.01. The graph also confirms that there is very 
little finite-size effect for t > 30, although, as noted above, there are strong 
edge effects. 

4. CONCLUSION 

We find excellent agreement for the fractal dimensionality of the 
backbone with the numerical results of Herrmann and Stnaley (15) and good 
agreement with some numerical estimates. The value for dmi n reported here 
is in good agreement with the conjecture of Havlin and Nossal, (18/ and 
although our error bars cannot exclude the value reported by 
Grassberger, (19) we find no evidence for the value drain = 1. Larger systems 
may place smaller error bars on the various fractal exponents. 

Hong e ta / .  (27) have noted that fractal properties of the backbone show 
less fluctuation that the equivalent properties on the percolating cluster and 
therefore the direct measurement of dmi n is, we believe, as reliable as the 
numerical results reported by others and perhaps of comparable accuracy. 
Our numerical results are well represented by the following mnemonics: 
d BB = 8/5, d t = 7/5, and ~7 = 7/8. DeArcangelis et al. (4~ have given a rigorous f 
argument that d~ B ~< d~ uH, the fractal dimensionality of the hull of the per- 
colating cluster, (25) which is conjectured to be 7/4. (~61 It is not without 
interest to see whether arguments exist to establish exact values for the 
exponents reported above. We have also constructed the multiple 
backbone, which appears to be in the same universality class as the stan- 
dard backbone. The algorithm will be used to determine the fractal proper- 
ties of the backbone in higher dimensions. 
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